skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nurul M. Islam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents 3D printed polymer-based flexible electrode substrates exhibiting high surface area and flexibility in reverse electrowetting-on-dielectric energy harvesting for powering patchable human health monitoring sensors. Composite electrode substrates are printed using polydimethylsiloxane (PDMS) polymer and carbon black in 20:1 ratio by weight to provide some mechanical strength to the electrodes. Thin film layers of titanium for current collection and aluminum oxide as dielectric are deposited on the substrates to complete the electrode fabrication process. Without applying any bias voltage, the AC current due to periodic variance in capacitance resulting from mechanical modulation of an electrolyte droplet between two electrodes is measured for a low frequency range that falls within human motion activities. Mechanical integrity of the electrodes are characterized in terms of stress-strain analysis demonstrating robustness of their longevity. 
    more » « less